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Object category localization

 Locate object category instances by means of bounding box

 Supervised learning setup: 
► Training images with bounding-box annotations of object instances
► Learn a binary classifier: windows are a category instance or not

 Numerous applications 
► Surveillance
► Traffic safety: autonomous or assisted driving systems
► ...



Why learning from incomplete supervision?

 Bounding boxes are much more expensive to get than image labels

 Weakly supervised learning only uses image-wide labels
► For positive images we only know there's at least one instance, but 

we don't know how many and where they are 
► Less detail in supervision than in target outputs
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Challenging factors in object detection

 Intra-class appearance variation 
► Objects deformation due to pose
► Transparency: e.g. bottles
► Sub-categories: e.g. ferry vs yacht 

 Scene composition 
► Heavy occlusions: e.g. tables and chairs
► Clutter: coincidental image content present

in bounding box

 Imaging conditions 
► viewpoint, scale, lighting conditions



State-of-the-art visual representations (1/2)

 Fischer vector image representation [Sanchez et al., IJCV, 2013]
► Represent data with gradient of log-likelihood of generative model

 Densely sampled SIFT descriptors modeled with Gaussian mixture

 Encode an image by gradient w.r.t. means and variances: 2KD vector 
► Results in a 140K dimensional signature
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State-of-the-art visual representations (2/2)

 Use a Convolutional Neural Network as a feature extraction method 
for object detection [R-CNN, Girschik et al., 2013]

 Trained on 1 million images of 1000 categories (ImageNet 2012)

  Caffe framework [Jia et al., caffe.berkeleyvision.org]

 Use last shared layer as a 4K dimensional representation 



How to avoid exhaustive sliding window search

 Branch-and-bound techniques 



Search: restricted scanning of bounding box space

 Selective search method [Uijlings et al., IJCV, 2013]
► Unsupervised multi-resolution hierarchical segmentation
► Detections proposals generated as bounding box of segments
► 1500 windows per image suffice to cover over 95% of true objects 

with sufficient accuracy
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Learning from incomplete supervision

 A joint identification problem: 
► Locating object instances in positive images
► Learning detector from positive and negative examples 



State-of-the-art weakly-supervised detector training

 Vast majority of work relies on 
multiple-instance learning 

Pandey & Lazebnik 2011, Siva et al. 
2011, 2012, 2013, Russakovsky et al. 
2012, Shi et al. 2013, ...

 Approaches vary in terms of
► Initialization strategy
► Object descriptors and detector
► Utilization of pair-wise window 

similarities

 Some alternative recent approaches 
are based on topic models, e.g. LDA

Shi, Hospedales, Xiang, ICCV 2013. 
Wang, Ren, Huang, Tan, ECCV 2014.



The multiple instance learning (MIL) approach

 Examples come in labeled “bags”

[Dietterich et al., Artif. Intell., 1997]
► Positive bags contain at least 

one positive sample
► Negative bags only contain 

negative samples

 Multiple Instance SVM

[Andrews et al., NIPS 2002]
► Initialize initial selection of 

samples from positive bags
► Train SVM with selection
► Select top scoring sample in 

each positive bag
► Repeat until convergence



Multiple instance learning in practice...

 Converges rapidly to poor local optima



The problems in multiple instance learning

 Given a trained detector, consider score of windows that
► do not match true objects
► do match true objects
► were used as positive samples to train the detector (might be wrong)



Problems in standard multiple instance learning

 Our window descriptors are high dimensional
► Descriptors are L2 normalized
► Most pairs are near orthogonal, i.e. near-zero dot products

 Linear classifier score is weighted sum of dot products

 Classifier scores much higher for positive windows used in training
► This causes the degenerate re-localization behavior
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Multi-fold training for multiple instance learning

 Separate sets of positive images for training and re-localization
► Negative images do not need to be split, since no relocalization there

 Repeat two steps
► Partition positive training images into K folds
► For fold k = 1,...,K

 Train detector from all training images, except those in fold k
 Select top-scoring window in each positive image in fold k

 Avoids the re-localization bias since images used for training and re-
localization are always different



Multi-fold training for multiple instance learning algorithm



Multi-fold training for multiple instance learning

 Resolves the degenerate re-localization of standard MIL training



Limitation of weakly supervised learning

 Weakly supervised learning learns the most discriminative pattern 
between the positive and negative images

 These patterns may correspond to parts instead of full objects
► For example the faces of cats and dogs due to body poses



Hypothesis refinement using low-level contours

 Encourage object hypotheses to align with long image contours
► Using efficient contour alignment score [Zitnick & Dollar, ECCV'14]

 After multi-fold training iterations: use weighted combination of detection 
and contour alignment score

 Final detector trained using the refined hypotheses
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Evaluations based on PASCAL VOC'07 benchmark

 Most challenging dataset for weakly supervised detection



Evaluation protocols

 Localization success on positive training images 
► Fraction of images with correct localization (CorLoc)

[Deselaers et al., PAMI 2012]

 Standard PASCAL-VOC detection Average Precision (AP) on test set

 Both measures averaged over 20 different object categories

 Detection declared a success if highly overlapping with ground-truth
► Intersection-over-union of window areas larger than 50%



Evaluation of multi-fold training

 Comparison of standard MIL training and multi-fold strategy

 Multi-fold training improves both performance measures using either 
Fisher vector or CNN features

Standard Multi-fold

  CorLoc

FV 29.7 38.8 (+9.1)

CNN 41.2 45.0 (+3.8)

Detection AP

FV 15.5 22.4 (+6.9)

CNN 24.3 25.9 (+1.6)



Evaluation of multi-fold training

 CorLoc over the re-training / re-localization iterations

 Iteration n: n-th iteration after initialization from full image



Window refinement and combining features

 Contour alignment score improves performance

 Combining features boosts performance

 Classes with largest improvements due to contour alignment

Refinement No Yes

Detection AP

FV 22.4 23.3 (+0.9)

CNN 25.9 28.6 (+2.7)

FV+CNN 27.4 30.2 (+2.8)

Refinement No Yes

CorLoc for FV+CNN

Horse 55.6 70.5 (+14.9)

Dog 37.3 48.4 (+11.4)

Cat 24.8 35.6 (+10.8)



The relation between CorLoc and detection AP

 Relation between localization during training and final test performance
► Each of the 20 classes gives a point on the graph



Relative performance of weakly supervised learning

 Ratio of detection AP with weakly supervised training (image-labels) 
and AP with same detector trained from bounding box annotations
► Each point represents one object category



Overview of the state of the art

 Methods divided into those that use external training data to learn CNN 
features and those that do not

 Results comparable with the state of the art (with CNN features), or 
better when no external training data is used

 A lot of  improvement in performance of weakly supervised detection in 
recent years: AP values have doubled !



Conclusion

 Presented a state-of-the-art weakly supervised object detection method
► Strong appearance cues for recognition: FV and CNN descriptors
► Re-localization bias suppression: Multi-fold MIL training
► Localization refinement: alignment with long contours

 Future directions:
► Dealing with noise on the image labels
► Concurrent training of categories: leverage explaining away
► Richer interactions between recognition and segmentation
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